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INTRODUCTION 

Increasingly complicated embedded systems such as systems-on-chip (SoC) present an 
key challenge to today’s designers. Engineers build such systems to exact specifications 
with consideration of restrictions on execution time, area, cost, etc. For high-performance 
embedded systems with limited on-chip resources, the hindrance in developing an 
efficient design is finding the minimum number and nature of functional units for 
executing an application with timing and code size requirements. 

Many applications represented by embedded systems have their most computation-
intensive and time-critical sections of code found in the repeating patterns of loops. We 
represent such instructions by multi-rate or synchronous data-flow graphs (SDFGs) (Parhi and 
Messerschmitt, 1991).Toenhance the operation of the system executing such a program, we 
could administer graph-transformation techniques to theSDFG in an attempt to increase 
the degree of parallelism thereby decreasing overall execution time. However, for some 
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graphs, these techniques may not be able to produce a transformed SDFG with the best 
schedule length. In this paper, we will offer a new transformation methodthat does deliver 
optimal results. When compared with the traditional methods, our new technique quickly 
and easily produces a transformed graph without increasing the size of the SDFG. 

As said earlier, each of the tasks comprising an embedded system has its own execution time 
and list of dependencies with other tasks. Typically, graph transformation techniques such as 
retiming (O’Neil and Sha, 2001) are employed to minimize the execution rates in a parallel or 
pipeline system. In the course of retiming, delays are redistributed among the edges so that the 
hardware usage is optimized while the application’s function remains the same. Retiming has 
traditionally been applied to SDFGs to optimize the application’s schedule of tasks (O’Neil and 
Sha, 2001), (O’Neil et al, 2011). It was later broadened to extend vectorization capabilities 
(Zivojnovic et al, 1994b) or minimize total delay count (Zivojnovic et al, 1994a).  

The benefits of retiming single-rate data-flow graphs (DFGs) are widely reported in the 
literature, particularly when combined with other transformations (O’Neil and Sha, 2005), 
(Chao and Sha, 1997). However, our prior work (O’Neil, 2011), (O’Neil, 2014) indicates 
thatsuch combinations may not always be possible for SDFGs.Therefore, the primary point 
of this research becomes fundamentally changing the actual retiming methodology in order 
to achieve the same advantages for SDFGs. The contributions of this paper are as follows: 

1. We propose a new graph transformation technique, extended retiming, which reduces 
the clock period of a retimed SDFG to the point where it matches the cycle period of 
the SDFG's optimal schedule. Also, it may be combined with DAG scheduling to form 
a flexible scheduling method. 

2. Because of this, we can design an efficient algorithm for verifying the existence of an 
extended retiming rthat will make cl(Gr) ≤ c for a given integer c. 

3. We demonstrate an algorithm for deriving extended retimings. 

Note that a preliminary version of this work for single-rate data-flow graphs has previously 
appeared (O’Neil and Sha, 2005), (O’Neil et al, 1999a), (O’Neil et al, 1999b). This initial work 
was incorporated into the IDOM framework (Zhuge et al, 2006) with other transformations 
to find minimum configurations of DSP processors satisfying timing and code size 
constraints. We are broadening it to the more general synchronous data-flow model. 

In the next section, we will formalize fundamental concepts such as synchronous data-
flow graphs, retiming and static scheduling. We present the theme of this paper in Section 
3, along with the major theorems. Next, we consider detailed examples of this work. 
Finally, we summarize our work and provide further questions for exploration. 

BACKGROUND 

In this section, we review the relevant definitions and ideas regarding synchronous data-
flow graphs to formalize these concepts. 
 
Synchronous Data-Flow Graphs 
Originally developed in (Lee and Messerschmitt, 1987), asynchronousdata-flow graph 

(SDFG) is a finite, directed, weighted graph G = V,E,d,t,p,k where 

1. V is the vertex set of nodes that transform input data streams into output streams; 

2. EVV is the edge set, representing channels that carry data streams; 

3. d : Eℕ { 0 } is a function with d(e) the number of initial tokens (delays) on edge e; 
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4. t : Vℕ is a function with t(v) the execution time of node v; 

5. p : Eℕ is a function with p(e) the number of data tokens produced at e's source node 
to be carried by e; and 

6. k : Eℕ is a function with k(e) the number of data tokens consumed from e by e's sink 
node. 

 

(In this definition ℕis the set of natural numbers {1, 2, 3, ...}.) If p(e) = k(e) = 1 for all edges e, 
we say that G is a homogeneous data-flow graph (HDFG). Some authors refer to HDFGs as 
single-rate data-flow graphs or simply data-flow graphs. 
 
To illustrate, consider the SDFG given in Fig. 1 below. We will assume thatt(v) = 2 for all 
nodes v in this simple example. The small numbers at either end of an edge denote tokens 
produced or consumed. In this example, the numbers at either end of the data channel 
connecting C and A, hereafter denoted (C,A), indicate that node C produces one token on 
this edge when it executes. Similarly, node A consumes two tokens from this edge each 
time it runs. The short bar-lines cutting (A,B) represent initial tokens to be consumed by B. 
 

 

Fig. 1: Sample SDFG 

 

It is sometimes useful to characterize an SDFG by its|E| × |V| topology matrix. Each row 
corresponds to one edge in the graph while each column corresponds to a node. A positive 
(i,j)th entry in the topology matrix indicates the number of tokens produced by the jth node on 
the ith edge. Similarly a negative entry here gives the number of tokens consumed by node j 
from edge i. All other entries are zero. As an example, the topology matrix of Fig. 1 is 
 

𝑀 =  
1 −2 0
0 4 −1
−2 0 1

  

For purposes of this representation, nodes A, B and C are designated nodes 0, 1 and 2, 
respectively. We number the edges in the order (A,B), (B,C) and (C,A) in the matrix. 
 
From (Lee and Messerschmitt, 1987), we know that a repeating sequential schedule for a 
SDFG Gcan be constructed if the rank G’s topology matrix is one less than |V(G)|. If this 

condition holds there is a positive integer vectorq in the null space of the topology matrix 
called a repetition vector for G. The repetition vector for G with the smallest norm is known as 
the basic repetition vector (BRV) for G (Lee and Messerschmitt, 1987). For example, the BRV for 

the SDFG in Fig. 1 isq  = [ 2 1 4 ]T. The elements of a BRVq indicate that qj copies of node vj 
must execute during every iteration of the static schedule. In our example, we must schedule 
two copies of A, one of B and four of C each time. A SDFG is consistent if it has a BRV. 
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The Iteration Bound of a SDFG 
An iteration of an SDFG is simply a single execution of all copies of all nodes of the SDFG. 
The cycle period of the SDFG is then the average computation time of one iteration within a 
given schedule. In synchronous graphs containing loops, this figure is bounded from 
below by the graph’s iteration bound(Renfors and Neuvo, 1981). We use the notation B(G) 
to represent G’s iteration bound, derived by computing the time-to-delay ratios for all 
cycles in the graph and retaining the maximum of these figures. While complicated to 
derive for SDFGs in general, as shown in (O’Neil et al., 2011), we can quickly estimate this 
value via the inequality:  
 

𝐵(𝐺) ≥ max
𝑙𝑜𝑜𝑝 ℓ∈𝐺

 𝑡(𝑣)𝑣∈ℓ

  𝑑(𝑒) max{𝑞𝑢 , 𝑞𝑣}  𝑒=(𝑢 ,𝑣)∈ℓ

 (1) 

  
where the synchronous graph G has a basic repetition vector of [q0,...,q|V|-1]. Returning to 
Fig. 1, the depicted graph includes one loop with an adjusted delay count of two and node 
computation times summing to 6; therefore B(G) ≥ 3 for Fig. 1. 
 
Clock and Cycle Period 
There are two measures of quality that we will use to assess static schedules. One is the 
cycle period based on a given schedule. For the other, define a pathp in an SDFG G to be a 
connected sequence of nodes and edges. We use the notation T(p) to represent the sum of 
the individual node execution times along the path. We formally define the clock 
periodcl(G) of an SDFG G as “the maximum amount of propagation delay through which 
any signal must pass between clock ticks” (Leiserson and Saxe, 1991). Mathematically, this 
is the computation time of the longest path having insufficient delays to halt a signal 
between clock ticks; in other words 
 

𝑐𝑙 𝐺 = max
𝑝∈𝐺

𝑇(𝑝) 

 
where p∈G is a path with d(e) < max{qu,qv}  for all e = (u,v)∈p. For HDFGs, this is simply 
the computation time of the longest zero-delay path. Our example graph in Fig. 1 has a 
clock period of 4. 

We already see the discrepancy. For any distribution of the delays in Fig. 1 the clock 
period remains at least 4 while the smaller iteration bound for the same SDFG implies the 
existence of a more efficient static schedule. In general, the minimum cycle period is less 
than or equal to the minimum achievable clock period because of the flexibility built into 
static scheduling. (In cases where these figures match, we will consider both the schedule 
and hardware configuration to be optimal.) However, the advantages of using graph 
transformation techniques are clearly visualized and easily understood from working with 
graph models, motivating our desire to develop a new graph transformation method. 
 
Static SDFG Scheduling 
As shown in(O’Neil et al., 2011), there are two models we consider when discussing static 

scheduling. Formally, a function s : V (ℕ { 0 }) ℕ { 0 }  is an integral schedule for a 

SDFG G where s(v,i) is the starting time of node v in iteration i (i 0). Likewise, a function s 

: V (ℕ { 0 })  {rℚ | r 0 } with the same stated properties is a fractional schedule for G. 

In either case, s is legal if, for each edge e = (u,v) and iteration i 0, s(u,i) + t(u) s(v, i + d(e) 

/ max {qu,qv}) (O’Neil et al, 2011). Such schedules are repeating for cycle period c⁄f if s(v,i+f) = 
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s(v,i) + c for all nodes v and iterations i (Chao, 1993). Repeating schedules may be 
characterized by their initial iterations, given the fact that the full legal schedule may be 
constructed by commencing a new copy of the partial timetable every c clock ticks. Finally, 
a schedule is static if a node’s execution is designated to proceed on the same functional 
unit in every partial schedule instantiation (Chao, 1993). 

As a final point, there are two design approaches to consider when devising a static schedule 
(Chao, 1993). Our work deals with those following a non-pipelined implementation wherein the 
next occurrence of a node cannot proceed until the prior copy has terminated execution, 
creating an inherent precedence relation between successive incidences of the same node. 
Alternately, schedules following a pipelined implementation are not subject to this limitation. 
 
SDFG Scheduling Algorithm 

Our method (O’Neil et al, 2011), (O’Neil, 2012) for devising an integral, repeating static 
schedule for a given SDFG G and target cycle period c begins with the construction of a 

scheduling graphGs = V  {v0}, E, , , p, k. This model encapsulates all information we 
will ultimately need to create our schedule. First, each edge e = (u,v) is reweighted 
according to the formula 
 

𝑤 𝑒 =  
𝑑(𝑒)

max{𝑞𝑢 , 𝑞𝑣}
 −

𝑡(𝑢)

𝑐
 

 
to preserve precedence relations among the nodes. Finally, we seek to uncover negative-weight 
cycles, indicating an infeasible clock period (O’Neil et al., 2011). Start by inserting a dummy 
node v0, then add directed zero-weight edges from this new node to every other node in G. As 
an illustration, the scheduling graph for Fig. 1 with cycle period 3 appears as Fig. 2 below. 
 

 
Fig. 2: The scheduling graph for Fig. 1 with cycle period 3 

 
After this, the Bellman-Ford single-source shortest-path algorithm (Cormen et al., 2009) is 
applied to the scheduling graph. If the algorithm finds a cycle having negative total 
weight, the proposed cycle period is infeasible, and the algorithm fails. Otherwise, we can 
obtain the shortest path weights from v0 to every other node in the scheduling graph. This 
information is used to derive the starting times for all nodes v in the first f schedule 
iterations according to the formula 
 

𝒔 𝒗, 𝒊 =  𝒄(𝒊 − 𝒔𝒉 𝒗 )  
 
for i = 0, 1, …, f – 1 . These then repeat every c steps to generate the entire schedule. As in 
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(O’Neil et al., 2011), this method defines a legal, repeating, static schedule under either of 
the design styles described above. 

Re-examining the scheduling graph forFig. 1, we see that sh(A) = –⅔, sh(B) = –⅓ and sh(C) 
= 0. This yields start times of 2, 1 and 0 for A, B, and C, respectively. We depict this 
schedule in Fig. 3 below.  
 

TIME            

0 2 4 6 8 10 12  

   A0  A1  A2  A3  

   A0  A1  A2  A3  

  B0  B1  B2  B3   

 C0  C1  C2  C3    

 C0  C1  C2  C3    

 C0  C1  C2  C3    

 C0  C1  C2  C3    

Fig. 3: The partial schedule for Fig. 1 with cycle period 3 

EXTENDED RETIMING 

Having demonstrated above that traditional retiming will not necessarily result in an 
optimal schedule, we are now prepared to devise a form of retiming that will. 

The General Concept 

An extended retiming of a SDFG G = V,E,d,t  is a function r:V ℚsuch that t(v) r(v) ℕ { 

0 } for all vV.  From this definition, r(v) can be viewed as consisting of an integer part and 

a fractional part. The integer part r(v) is the number of delays pushed to each outgoing 
edge of v while the fractional part conveys the position of a delay within a split node. 

Therefore, the value r(v) is the number of delays drawn from each incoming edge of v, and 

if r(v) – r(v) = 1, a group of delays remains inside node vto divide it into two sub-nodes 

having computation times t(v)  ( r(v) – r(v) )and t(v)  (r(v) – r(v)). For example, an 
extended retiming with r(A) = 0, r(B) = ½, and r(C) = 0 applied to the SDFG described in 
Fig. 1 above produces the retimed graph of Fig. 4below. 
 

 
Fig. 4: Fig. 1 retimed. 
 
We see that our new abstraction captures pipelining information that eludes traditional 
retiming, which will lead to more flexible scheduling options. As with standard retiming, 

we will denote the DFG retimed by r as Gr = V,E,dr,t.  We utilize the notationd(uv) to 
represent the total number of delays along an edge e = (u,v), including delays contained 
within the end nodes uand v. As in the traditional case, we will refer to the number of 
delays on the edge,not including delays within end nodes, as d(e). Using the example from 

Fig. 4, let e1 = (A,B), e2 = (B,C) and e3 = (C,A). Then d(AB) and d(BC) are each 1 due to a 

split end-node, even though d(e1) and d(e2) are each zero, while d(CA) = d(e3) = 4 since 
there is no split end-node for this edge. 
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The delay count of the edge following retiming by r will be denoted dr(e) or dr(uv) as 
elsewhere. Based on the above discussion we can generate the following basic definitions. 
 
Definition 1.Let G be a SDFG and r an extended retiming. Let e = (u,v) be an edge in G. Then: 

1. dr(e) = d(e) + max{qu,qv} ( r(u) – r(v) ).  

2. dr(uv) = dr(e) + qu ( r(u) – r(u) ) 

+ qv ( r(v) – r(v) ). 

As with traditional retiming, an extended retiming is legal if dr(e)  0 for all edges eE and 

normalized if minv r(v) = 0. To normalize an extended retiming, we must subtract minv 

r(v) from all values r(v). 
 
Subpaths 

Our previous definition of a path assumes that a path includes all pieces of its initial and 
final nodes. On the other hand, we will define a connected sequence of nodes and edges 
which includes only some of the pieces of its initial and final nodes to be a subpath. For 
example, consider the graph in Fig. 4. Any path that begins or ends with node B must 
include both pieces of the node while a subpath may begin or end at either piece and need 
not include both. Thus a path is a subpath, but a subpath is not necessarily a path. 

It is clear that some pieces of the end-nodes are likely missing when we discuss a subpath. 
For example, suppose that u and v are the end-nodes of the path p. We may split each of 
these nodes by a delay into right and left subnodes. If w is a divided node, we will 
designate the left and right subnodes for w as wL and wR, respectively.  

The total computation time of a subpath is the total computation time of the full path, 
minus the computation times of any excluded half-nodes. Computing the total delay count 
is not as straightforward for synchronous graphs due to differing production and 
consumption rates of the individual edges. More useful is the lower delay bound of the path, 
defined as 

𝛿 𝑝 =   
𝑑(𝑒)

max{𝑞𝑢 , 𝑞𝑣}
 

𝑒=(𝑢 ,𝑣)∈𝑝

. 

 
We can now demonstrate the following:  

Lemma 2.Let G be a SDFG and c a potential clock period.  cl(G) ≤ c if and only if, for every 

subpath p from u to v in G with no internal split nodes and T(p)> c, the lower delay bound (p)1. 

Proof. Suppose that cl(G) ≤ c.  By definition, cl(G) is the maximum computation time among 

all paths with d(e) < max{qu,qv} for all edges e=(u,v).  Thus, for any subpath p,  d(e) / max 

{qu,qv} = 0 for all edges in the subpath and (p) = 0 for all such subpaths. Hence, if p is a 
subpath with no internal split nodes and total computation time greater than c, there must 
exist at least one sufficiently large group of delays along some edge in the subpath. In 

other words, T(p) >c implies(p)1. On the other hand, assume that any subpath p with 

(p)= 0 and without internal split nodes has computation time T(p) ≤ c.  Then d(e) < 
max{qu,qv} for all edges e=(u,v) along p. Since cl(G) is the maximum computation time of all 
such subpaths, we must have cl(G) ≤  c as well.     
   □ 

In the case of Fig. 4, this means that the clock period is indeed three due to the subpaths 
from A to BL and from BR to C. 
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Extended Retiming and SDFG Scheduling 
Theorem 11 of (Leiserson and Saxe, 1991) establishes the equivalence of an optimal 
traditional retiming's existence and the absence of negative cycles in the scheduling graph 
for unit-time DFGs.  We will now prove a similar relationship for general-time SDFGs. 

Theorem 3.Let G = V,E,d,tbe a (general-time) SDFG without split nodes. Letcbe a positive 
integer witht(v) ≤ cfor all v. Then there is a legal extended retimingronGsuchthatcl(Gr) ≤ cif and 
only if thescheduling graph Gs contains no negative-weight cycle. 

Proof. Assume cl(Gr) ≤ c. By definition, the iteration bound B(Gr) is less than or equal to cl(Gr), 
and since retiming does not affect the iteration bound, B(G) = B(Gr) ≤ c. This implies that 

 𝑡(𝑣)
𝑣∈ℓ

≤ 𝑐 ∙   
𝑑(𝑒)

max{𝑞𝑢 , 𝑞𝑣}
 

𝑒=(𝑢 ,𝑣)∈ℓ

 

 
for all cycles ℓ in G by equation (1) above, which implies that 
 

   
𝑑(𝑒)

max{𝑞𝑢 , 𝑞𝑣}
 −

𝑡(𝑣)

𝑐
 

𝑒=(𝑢 ,𝑣)∈ℓ

≥ 0. 

 
Since a cycle in G is also one in Gs, we see that the sum of the edge weights is non-negative 
for all cycles ℓ in Gs. Therefore, Gs has no negative weight cycles. 

On the other hand assume that Gs contains no negative-weight cycle. Let X = minvsh(v) and 

R(v) = c (( sh(v) – X)  – sh(v) – X ) for all nodes v. We now define 

𝑟 𝑣 =   𝑠ℎ 𝑣 − 𝑋 + min  1,
𝑅(𝑣)

𝑡(𝑣)
 . (2) 

  

We assert that r is a legal extended retiming. If so, based on our earlier discussion, any 
node split by retiming via r is divided into subnodes vL and vR having execution times R(v) 
and t(v) – R(v), respectively. We now want to show that r is a legal extended retiming and 
that cl(Gr) ≤ c. 

 Choose any edge e = (u,v) in G. Then 

𝑠ℎ 𝑣 ≤ 𝑠ℎ 𝑢 +   
𝑑(𝑒)

max{𝑞𝑢 , 𝑞𝑣}
 −

𝑡 𝑢 

𝑐
 

and so 

 𝑠ℎ 𝑣 − 𝑋 ≤  𝑠ℎ 𝑢 − 𝑋 

+   
𝑑 𝑒 

max 𝑞𝑢 , 𝑞𝑣 
 −

𝑡 𝑢 

𝑐
 

=  𝑠ℎ 𝑢 − 𝑋 

+  
𝑑 𝑒 

max 𝑞𝑢 , 𝑞𝑣 
 −  1

 

since 0 <t(u)/c ≤ 1. By definition 
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𝑑𝑟(𝑒)

max 𝑞𝑢 , 𝑞𝑣 
=

𝑑(𝑒)

max 𝑞𝑢 , 𝑞𝑣 
+  𝑟 𝑢  − 𝑟 𝑣 

≥  
𝑑(𝑒)

max{𝑞𝑢 , 𝑞𝑣}
 +  𝑠ℎ 𝑢 − 𝑋 

− 𝑠ℎ 𝑣 − 𝑋 −  1

≥ 0.

 

Thus dr(e)  0 and r is a legal extended retiming by definition. 

 Consider a subpath p in Gr with end nodes u and v, no internal split nodes and whose 
computation time is larger than c. We wish to show that the lower delay bound of p is greater 
than or equal to 1. There are now nine possibilities for p, five of which clearly have delay 
counts greater than 1 since p passes through a delay contained within a split end node: 

o u is split, and p is one of uL…v (for v not split), uL…vR or uL…vL (for v split); 

o orv is split, and p is either u…vR (for u not split) or uR…vR (for u split). 

We now deal individually with the remaining four cases. 

Case 1. Suppose p : u…v. In this case neither u nor v is split so r(u) = sh(u) – X and 
r(v) = sh(v) – X are both integers, making floor and ceiling functions unnecessary in 
the definition of the path's delay count. It is easy to see that 

𝑠ℎ(𝑣) ≤ 𝑠ℎ 𝑢 

+    
𝑑(𝑒)

max{𝑞𝑤 , 𝑞𝑧}
 −

𝑡 𝑤 

𝑐
 

𝑒=(𝑤 ,𝑧)∈𝑝

≤ 𝑠ℎ 𝑢 −
𝑇 𝑝 − 𝑡(𝑣)

𝑐

+   
𝑑(𝑒)

max{𝑞𝑤 , 𝑞𝑧}
 

𝑒=(𝑤 ,𝑧)∈𝑝

.

 

Thus 

𝛿𝑟(𝑝) =   
𝑑𝑟(𝑒)

max{𝑞𝑤 , 𝑞𝑧}
 

𝑒=(𝑤 ,𝑧)∈𝑝

=   
𝑑(𝑒)

max{𝑞𝑤 , 𝑞𝑧}
+  𝑟(𝑤) −  𝑟(𝑧)  

𝑒=(𝑤 ,𝑧)∈𝑝

≥    𝑟(𝑤) −  𝑟(𝑧)  

𝑒=(𝑤 ,𝑧)∈𝑝

+   
𝑑(𝑒)

max{𝑞𝑤 , 𝑞𝑧}
 

𝑒=(𝑤 ,𝑧)∈𝑝

.

 

Now 

   𝑟 𝑤  −  𝑟 𝑧   

𝑒= 𝑤 ,𝑧 ∈𝑝

=  𝑟(𝑢) +   − 𝑟(𝑤) +  𝑟(𝑤)  −  𝑟(𝑣) 
𝑤∈𝑝

𝑤≠𝑢 ,𝑣

=  𝑟(𝑢) −  𝑟(𝑣) 

 

since none of the internal nodes of p are split. Continuing from there 
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𝛿𝑟(𝑝) ≥ 𝑟 𝑢 − 𝑟 𝑣 +   
𝑑(𝑒)

max{𝑞𝑤 , 𝑞𝑧}
 

𝑒=(𝑤 ,𝑧)∈𝑝

= 𝑠ℎ 𝑢 − 𝑠ℎ 𝑣 +   
𝑑(𝑒)

max{𝑞𝑤 , 𝑞𝑧}
 

𝑒=(𝑤 ,𝑧)∈𝑝

≥
𝑇 𝑝 − 𝑡(𝑣)

𝑐
> 0.

 

Since the retimed delay count is an integer that is greater than or equal to a strictly positive 

fraction, we conclude that r(p)  1.  

Case 2. Suppose p is the path u…vL. Then p is part of some larger path u…v 
denoted p*. Note that 

1. T(p) = T(p*) – t(vR) >c by assumption; 

2. r(p) = r(p*) since both the path and the subpath share the same edges; and 

3. Finally since v is split 

𝑡 𝑣𝐿 = 𝑡 𝑣 ∙  𝑟 𝑣 −  𝑟 𝑣   

= 𝑡(𝑣) ∙   𝑠ℎ 𝑣 − 𝑋 +
𝑅(𝑣)

𝑡(𝑣)
−  𝑠ℎ 𝑣 − 𝑋  

= 𝑐 ∙   𝑠ℎ 𝑣 − 𝑋 −  𝑠ℎ 𝑣 − 𝑋  

 

Now, since u is not split 

𝛿𝑟(𝑝) ≥  𝑟(𝑢) −  𝑟(𝑣) +   
𝑑(𝑒)

max{𝑞𝑤 , 𝑞𝑧}
 

𝑒=(𝑤 ,𝑧)∈𝑝

=  𝑠ℎ 𝑢 − 𝑋 −   𝑠ℎ 𝑣 − 𝑋 + 1 

+   
𝑑(𝑒)

max{𝑞𝑤 , 𝑞𝑧}
 

𝑒=(𝑤 ,𝑧)∈𝑝

= (𝑠ℎ 𝑢 − 𝑠ℎ 𝑣) +   
𝑑(𝑒)

max{𝑞𝑤 , 𝑞𝑧}
 

𝑒=(𝑤 ,𝑧)∈𝑝

+(𝑠ℎ 𝑣 − 𝑋) −   𝑠ℎ 𝑣 − 𝑋 + 1 

≥
𝑇 𝑝∗ − 𝑡(𝑣)

𝑐
+  𝑠ℎ 𝑣 − 𝑋 −  𝑠ℎ 𝑣 − 𝑋 − 1

=
𝑇 𝑝∗ − 𝑡(𝑣𝑅)

𝑐
−

𝑡(𝑣𝐿)

𝑐
+

𝑡(𝑣𝐿)

𝑐
− 1

> 0

 

as above and from the definition of t(vL). As before we conclude that r(p)  1. 

Case 3. Suppose p is the path uR…v. This time v is not split and again p is part of some 

larger path u…v called p* with T(p*) – t(uL) >c, so as before 
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𝛿𝑟(𝑝) ≥  𝑟(𝑢) −  𝑟(𝑣) 

+   
𝑑(𝑒)

max{𝑞𝑤 , 𝑞𝑧}
 

𝑒=(𝑤 ,𝑧)∈𝑝

=  𝑠ℎ 𝑢 − 𝑋 −  𝑠ℎ 𝑣 − 𝑋 

+   
𝑑(𝑒)

max{𝑞𝑤 , 𝑞𝑧}
 

𝑒=(𝑤 ,𝑧)∈𝑝

= (𝑠ℎ 𝑢 − 𝑠ℎ 𝑣) 

+   
𝑑(𝑒)

max{𝑞𝑤 , 𝑞𝑧}
 

𝑒=(𝑤 ,𝑧)∈𝑝

+ 𝑠ℎ 𝑢 − 𝑋 −  𝑠ℎ 𝑢 − 𝑋 

=
𝑇 𝑝∗ − 𝑡(𝑣)

𝑐
−

𝑡(𝑢𝐿)

𝑐

> 1 −
𝑡(𝑣)

𝑐
≥ 0

 

since 0 <t(v) ≤ c by assumption, so r(p)  1. 

Case 4. Finally suppose p : uRvL. Both end nodes are split and T(p*) – t(uL) – t(vR)  >c. As 
above 

𝛿𝑟(𝑝) ≥  𝑟(𝑢) −  𝑟(𝑣) +   
𝑑(𝑒)

max{𝑞𝑤 , 𝑞𝑧}
 

𝑒=(𝑤 ,𝑧)∈𝑝

=  𝑠ℎ 𝑢 − 𝑋 −  𝑠ℎ 𝑣 − 𝑋 − 1

+   
𝑑(𝑒)

max{𝑞𝑤 , 𝑞𝑧}
 

𝑒=(𝑤 ,𝑧)∈𝑝

= (𝑠ℎ 𝑢 − 𝑠ℎ 𝑣) +   
𝑑(𝑒)

max{𝑞𝑤 , 𝑞𝑧}
 

𝑒=(𝑤 ,𝑧)∈𝑝

+( 𝑠ℎ 𝑢 − 𝑋 −  𝑠ℎ 𝑢 − 𝑋 )

−( 𝑠ℎ 𝑣 − 𝑋 −  𝑠ℎ 𝑣 − 𝑋 ) − 1

≥
𝑇 𝑝∗ − 𝑡(𝑣)

𝑐
+

𝑡(𝑣𝐿)

𝑐
−

𝑡(𝑢𝐿)

𝑐
− 1

=
𝑇 𝑝∗ − 𝑡(𝑢𝐿)

𝑐
+

𝑡 𝑣𝐿 − 𝑡(𝑣)

𝑐
− 1

=
𝑇 𝑝∗ − 𝑡(𝑢𝐿) − 𝑡(𝑣𝑅)

𝑐
− 1 > 0

 

and again r(p)  1. 

In any case, the lower delay bound of the retimed subpath is larger than one, and by 
Lemma 2, cl(Gr) ≤ c.        
   □ 

Note that extended retiming is only the first part of the overall scheduling process. Once a 
graph is retimed, DAG scheduling must be applied to the altered graph to compute start 
times for execution of the nodes. Let us now summarize what we have proven so far: 

Theorem 4. Let Gbe a SDFG andcan integer. The following statements are equivalent: 

1. There is a legal extended retiming r on G such that cl(Gr) ≤ c. 
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2. There exists a legal, integral, repeating, static schedule for G under the non-pipelined 
implementation with cycle period c. 

3. The scheduling graph Gsassuming cycle period ccontains no cycle having negative delay count 
andt(v) ≤ cfor all nodes vof G. 

4. The iteration boundB(G) ≤ candt(v) ≤ cfor all nodes vof G. 

Proof. Theorem 3 establishes the equivalence of (1) and (3).  The equivalence of (3) and (4)is 
proven in Lemma 3.1 of (O’Neil et al., 2011). Finally, the equivalence of (4) and (2) is 
proven in Theorem 3.3 of (O’Neil et al., 2011).     
 □ 

See that we have also developed a more efficient algorithm for checking the legality of a clock 
period. Traditionally, it has taken O( |V| |E| ) time to see if we have a legal retiming r such 
that cl(Gr) ≤ c for a given c.  Now, we simply verify that the known values of B(G) and the 
maximum t(v) are all smaller than our chosen c and can know almost immediately if there's 
such an extended retiming. This theorem also shows that extended retiming can produce a 
clock period as small as the cycle period obtained by the scheduling algorithm of (O’Neil et al, 
2011). Therefore, that scheduling algorithm is simply one specific case of this new extended-
retime-then-DAG-schedule method, as stated above. 

EXPERIMENTS WITH COMMON FILTERS 

As an overview of everything discussed to this point, we now wish to demonstrate our method 
and its usefulness with some more interesting examples involving well known filters. 
 
Detailed Multi-Rate Example: A Simplified Spectrum Analyzer 
As an interesting quickly-reviewable example, let us apply our algorithms to a variation of 
the spectrum analyzer G from (Zivojnovic et al., 1994a) which appears in Fig. 5(a), with 
node descriptions in Fig. 5(b). This graph has a BRV of q = [ 16 1 1 1 4 1 ]T, so in the interest 
of space we will not display most of the intermediate figures at each step. Instead, we shall 
describe the pertinent information. 

In Fig. 5(a) there are two loops. The path B → C → D → F → B gives a time-to-delay ratio 
of 6⁄2 or 3 for smaller of the two. The other loop includes the path A → B → C → D → E → 
A. The only edges with delays are (C,D), which requires no adjustment, and (E,A), whose 
adjusted delay count for our calculation is 1. Thus the time-to-delay ratio for this loop is 
also 3. In any case, B(G) = 3 and three serves as a lower bound on our iteration period and 
will be our target when we schedule. 
 

 

(a) 
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Node Description Time 
A 
B 
C 
D 
E 
F 

Adaptive Low-Pass 
FFT Zoom 

Peak Detector 
Interpolator 

Decision 
Zoom Control 

1 
1 
2 
1 
1 
2 

 

(b) 
Fig. 5: A simplified spectrum analyzer 
 
When constructing the corresponding scheduling graph, we find that w((D, F)) = w((E,A)) 
= 2⁄3, w((C,D)) = 1⁄3, w((F,B)) = − 2⁄3 and w((A,B)) = w((B,C)) = w((D,E)) = − 1⁄3. The shortest 
path lengths are then sh(A) = sh(F) = 0, sh(B) = sh(D) = − 2⁄3 and sh(C) = sh(E) = −1. 

The zero-delay path F → B → C which prevents our CPU from operating at any speed 
slower than five clock ticks. We thus now apply retiming to attempt to reduce the length 
of this longest zero-delay path to match better the iteration bound. Substituting our 
shortest path lengths into equation (2) yields the function r(A) = r(B) = r(D) = r(F) = 0 and 
r(C) = r(E) = 1. Applying this retiming function produces the retimed analyzer of Fig. 6, 
which has longest zero-delay paths of length 3 and so is optimal. 

 

Fig. 6: The retimed analyzer 
 
Detailed Homogeneous Examples 
To further establish the benefit of extended retiming, we consider multiplevariations on 
familiar filters from (Kung et al., 1985). As a detailed illustration, consider the 2-cascaded 
biquad filter pictured in Fig. 7 below. It is formed by mapping the output of one infinite 
impulse response (IIR) filter to the input of another. As above, square nodes represent 
adders while circles represent multipliers. As one can observe, there are two families of 
cycles in this DFG. The first ({A, B, D} and {J, K, M}) contain two adders and a multiplier 
with a delay count of 2. The other ({A, C, D} and {J, L, M}) includes the same hardware but 
with only one total delay. If A is the cost of addition and M that of multiplication, we can 
see that the iteration bound of this filter is 2A+M. 
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Fig. 7: The 2-cascaded biquad filter 
 

To create more interesting variations on this example, we will multiply the register count 
of each edge by a factor of S.This is referred to in (Leiserson and Saxe, 1991) as applying a 
slowdown of S to our original circuit. The new iteration bound of the S-slow filter would 
then be 2A+M / S. 

If we now let A = M = S = 2, we see that the iteration bound equals 3. It can be shown by 
the retiming algorithm of (Leiserson and Saxe, 1991) that traditional retiming reduces the 
clock period of this filter only to 4. However, our method produces a retiming function of 
r(A) = r(L) = r(P) = 2, r(B) = r(C) = r(E) = r(F) = r(K) = r(N) =3½, r(D) = r(G) = 3, r(H) = r(M) 
= r(Q) = 1½, r(J) = 1 and r(R) = 0. Applying this to the filter, we derive the DFG in Fig. 8 
with clock period 3. 

 

Fig. 8: The retimed 2-slow 2-cascaded biquad filter with A = M = 2. 
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To further establish the benefit of extended retiming, we repeat this experiment. The first 
considered filter, the all-pole lattice filter, is used in voice synthesis. The second, the fifth order 
elliptic filter, is also common in signal processing. Using our previous notation, the S-slow 
versions of these filters have iteration bounds of 4A + 2M / S and 10A + 3M / S, respectively. 

For our trials, one of these three filters was selected and addition allowed to range in cost from 
1 to 29. Similarly, slowdowns between 1 and 20 were considered. The cost of multiplication 
ranged from the cost of addition up to 30. These values of A, M and S give us 3,959,950 
different variations for each of the selected filters. We compute the iteration bounds for each 
trial and apply the ceiling function to derive an optimal clock period. From here, a trial was 
rejected if this optimal clock period was smaller than the cost of multiplication. Finally, the 
retiming algorithm of (Leiserson and Saxe, 1991) was applied to each acceptable filter variation 
to derive the best clock period achievable by traditional retiming. 

We summarize the results of this experiment in Table 1 below. Here, a trial is classified as 
an “improvement” if traditional retiming could not achieve the target clock period while 
extended retiming could. Overall, extended retiming yielded a superior result (i.e. a 
smaller clock period) to traditional retiming in 62 percent of the circuits examined. The 
largest difference was found in the 7-slow elliptic filter with costs of 29 and 30 for addition 
and multiplication, respectively.  Here extended retiming delivers a circuit with a minimal 
clock period of 55, while traditional retiming can achieve no better than a clock of 205. 

Table 1: Summary of Experimental Results. 

 Total Cases Improvements Percent 

2-Cascaded Biquad Filter 810 224 28 
All-Pole Lattice Filter 1822 678 37 
Fifth Order Elliptic Filter 3905 3126 80 

 

A representative sample of our experiments appears in  
Table 2. In all cases cited, extended retiming gives us a better result than does traditional 
retiming. 
 

Table 2: Minimal achievable clock periods for different circuits. 

Benchmark 

Computation 
Time Slow- 

down 
Iter. 

Bound 

Min. Clock 
Period 

Add Mult Ext. Trad. 

2-Cascaded Biquad  3 4 2 5 5 7 
2-Cascaded Biquad  4 6 2 7 7 10 
All-Pole Lattice 2 2 4 3 3 6 
All-Pole Lattice 3 4 4 5 5 10 
Fifth Order Elliptic 2 2 2 13 13 14 
Fifth Order Elliptic 3 4 2 21 21 22 

CONCLUSION 

We have seen that our new method of extended retiming permits us to transform any data-
flow graph to one whose clock period matches the cycle period of any of its legal schedules. 
We have demonstrated conditions under which an integer is a permissible choice for either 
the clock or cycle period of a retimed SDFG. To wit, it must be an upper bound on both the 
computation times of all nodes and the graph’s iteration bound of the graph. 
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Throughout this paper, we have made simplifying assumptions, as do(Parhi and 
Messerschmitt, 1991),  (Leiserson and Saxe, 1991), (Chao and Sha, 1997).This allowed us to 
build up a rigorous body of results before refining it to deal with real-world 
complications. Taking unconstrained resources for granted is the most notable of these. As 
seen in (O’Neil, 2012), it appears possible to apply our methods in a more restrictive 
environment, but must continue to develop this line of inquiry. 

Furthermore, we have assumed the use of integral schedules under a non-pipelined 
implementation. The possibilities of fractional schedules, where operations may appear at 
any time (not necessarily at specific points), and pipelined implementations (Chao and Sha, 
1995) remain. Combinations of these four parameters (integral or fractional DFG 
scheduling, pipelined or non-pipelined implementation) give us three additional models 
to explore as we discuss extended retiming. 

The non-pipelining assumption is particularly crucial. The main result of this work 
depends on the binding of SDFG node execution times from above by the desired clock 
period. This restrictionreduces the usefulness of this methodin the general case. Indeed, by 
considering a 2-slow 2-cascaded biquad filter with A = 1 and M = 4, we can see the 
limitations. Of course, one can get around this restriction by using unfolding in addition to 
extended retiming, but removing this complication for a better stand-alone method 
remains a challenge. 

Finally, we have also assumed the use of a very particular multi-rate data-flow model, the 
most straightforward one. Applications of this method to data-flow models which vary 
the execution times of nodes according to a probability distribution (Tongsima et al., 2000) 
remain to be explored. Similarly, the consideration of multi-dimensional variations of 
these models (Passos, 1996) constitutes future work. 
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